Photo-production of J/ψ and High-Mass e⁺e⁻ in ultra-peripheral Au+Au collisions at 200 GeV/A by PHENIX

[PHENIX, arXiv: 0903.2041, submitted to PLB]

Zaida Conesa del Valle

Laboratoire Leprince-Ringuet (École Polytechnique, CNRS/IN2P3, France)

Quark Matter 2009

The ultra-peripheral collisions

Weizsacker-Williams (EPA):

Cf. Plenary talk by T.Lappi

- ♥ Electromagnetic field of an ultra-relativistic particle ≈ photon flux with continuous energy
- Characteristics of ultra-peripheral collisions (UPC)

 - Nuclei do not collide, possibility to study γ induced reactions

 - Coherence condition:
 γ wavelength > nucleus size ⇒ very low photon virtuality
 - Maximum center of mass energies: W_{max,γn}~ 34 GeV & W_{max,γγ}~ 6 GeV

[Baur et al, N.P.A729 787 (2003)] [M. G. Ryskin, Z. Phys. C 57 (1993) 89]

[J.Nystrand, NPA752 (2005) 470] [Armesto, J.Phys.G32:R367,2006] Dilepton:

test QED on a strongly interacting regime ($Z\alpha_{em} \sim 1$)

- Vector meson:
 - \checkmark Low-x (10⁻²) gluon PDFs, $x=(m_{VM}/W_{\gamma A})^2$
 - QQbar propagation in Cold Nuclear Matter (shadowing, absorption)

HowTo Trigger on UPCs

- Experimental challenge

 - Events characterized by a rapidity gap
 - Veto on the MB interaction trigger (BBC veto)
- The way out
 - Large probability to exchange additional soft photons
 - Nuclei excitation, most probably via Giant Dipole Resonance mechanism (GDR), decays by (forward) neutron emission
 - \$ Coincidence probability for J/ψ is 55±6%
 - Emitted neutrons serve as triggering tool 1 or 2 ZDC trigger (E~30GeV)
- Enrich the electron sample
 - ERT: EmCal Rich Trigger 2x2 tile threshold at E~0.8 GeV
- Used trigger configuration:

BBC veto ⊕ ZDC trg ⊕ ERT trg

[Balz et al P.R.L.89 012301 (2002) + private comm.]

[Baur et al, N.P.A729 787 (2003)]

The experimental signatures, the analysis

Signatures:

- ♦ Low particle multiplicities
- ♦ Low transverse momentum : coherence condition $p_T < 2\hbar/R$ or $p~m_{ee}/\gamma \sim 30-50$ MeV
- ♦ Zero net charge (N_{e+}= N_{e-})
- Narrow dN/dy

Analysis:

- Tracking DC, PC
- Vertex reconstructed from EmCal & PC information.
 |vertex| < 30 cm (Select events centered on the detector fiducial area)
- N. charged tracks == 2 (Selective diffractive criteria)
- Electron identification
 - RICH signal, n₀≥2
 - Track-EmCal matching with no dead/noisy tower
 - E₁ > 1 GeV || E₂ > 1GeV select electrons above the ERT trigger turn on curve
- Back-to-back electrons

Possible signal and background sources

>	Non-physical sources:	[D. D'Enterria et al., nucl-ex/0601001 (2005)]
	Cosmic rays:	
	no vertex, no ZDC.	
	Beam gas interactions:	
	no vertex, large multiplicities.	
	⇒ Trigger criterion gets rid of those	
>	Physical sources:	
	Peripheral nuclear A+A collisions:	
	☐ large multiplicities, ☐ large p _T .	
	 Hadronic diffractive (Pomeron-Pomeron, 	rapidity gap):
	☐ forward proton emission, ☐ larger p _T : ¡	$p_{T}(\gamma\gamma) < p_{T}(PP),$
	expect like-sign pairs too.	
	→ Analysis cuts gets rid of them	
	✓ Incoherent UPC: $\gamma+n \rightarrow n+J/\psi$	
	\square wider p_T : $p_T(\gamma\gamma) < p_T(\gamma P)$, \square asymmetry	y dN/dy,
	>2 neutrons (induced nuclear break-up) w	// same direction as J/Ψ.
	✓ Coherent UPC: $\gamma + \gamma \rightarrow e^+e^-, \gamma + A \rightarrow X$	$X+J/\psi$, $\gamma+A \rightarrow jet(s)+A$

We are sensitive to coherent and incoherent UPC!

The measured invariant mass

- ≥ 28 unlike-sign pairs and no like-sign pairs of m_{ee} > 2 GeV/c² ⇒ Clean sample, with zero net charge!
- Invariant mass fit input:
 - Coherent continuum shape derived from theoretical STARLIGHT-MC input + full detector simulation and reconstruction dN/dm_{e+e-} = A · exp(c m_{e+e-}); c = -1.9 ±0.1 GeV/c²

and by using a power-law form

N (e⁺e⁻) = 13.7 ± 3.7 (stat) ± 1.0 (syst) in $m_{ee} \in [2.0,2.8]$ GeV/c²

$(\gamma \gamma \rightarrow e^+e^-)$ transverse momentum distribution

- N(e⁺e⁻) = $13.7 \pm 3.7 \pm 1.0$ $m_{ee} \in [2.0,2.8] \text{ GeV/c}^2$
- Slicing in mass
 - $N(e^+e^-) = 7.4 \pm 2.7 \pm 1.0$ $m_{ee} \in [2.0,2.3] \text{ GeV/c}^2$
 - $N(e^+e^-) = 6.2 \pm 2.5 \pm 1.0$ $m_{ee} \in [2.3,2.8] \text{ GeV/c}^2$

- γ γ → e⁺e⁻ spectra is peaked at very low pt
 (p_T ≤ 100 MeV/c²)
 - © Evidence of the $\gamma \gamma \rightarrow e^+e^-$ coherent nature !

Coherent di-electron ($\gamma \gamma \rightarrow e^+e^-$) cross section

Cross section

$$\frac{d^2 \sigma_{e^+e^- + Xn}}{dy \, dm_{e^+e^-}} \Big|_{|y| < 0.35, \, \Delta m_{e^+e^-}} = \frac{N_{e^+e^-}}{Acc \cdot \varepsilon \cdot \varepsilon_{trigg} \cdot \mathcal{L}_{int}} \cdot \frac{1}{\Delta y} \cdot \frac{1}{\Delta m_{e^+e^-}}$$

$m_{e^+e^-}~[{ m GeV/c^2}]$	$d^2\sigma/dm_{e^+e^-}dy _{y=0}~[\mu{ m b}/({ m GeV/c^2})]$	
	data	STARLIGHT
e^+e^- continuum [2.0,2.8]	$86 \pm 23\mathrm{(stat)} \pm 16\mathrm{(syst)}$	90
e^+e^- continuum [2.0,2.3]	$129 \pm 47 \mathrm{(stat)} \pm 28 \mathrm{(syst)}$	138
e^+e^- continuum [2.3,2.8]	$60 \pm 24 (\mathrm{stat}) \pm 14 (\mathrm{syst})$	61

STARLIGHT: WW approx. in impact parameter space at LO

- Results agree with QED theoretical (STARLIGHT) calculations even though we are in a strongly interacting regime!
- Caveats / leftovers:
 - Lacking of other model comparisons on this kinematical region... input from theorists is most welcome!
 - Recent calculations seem to suggest that higher order corrections would suppress the e⁺e⁻ cross-section [Baltz, Phys.Rev.Lett. 100 (2008) 062302]
 - Cf. Baltz: 29% reduction on 140 < m_{ee} < 165 MeV/c² even if this holds true for higher masses our measurement would still be in agreement with the theoretical calculations

J/ψ transverse momentum distribution

- Coherent (γA) produced J/ψ should lead to $p_T ≤ 200 \text{ MeV/c}^2$
- The low p_T J/ψ consistent with the Au nuclear form factor F
 dN_{ee} / dp_T = A ·p_T·|F(p_T)|²
 ⇒ coherent (γA) J/ψ production
- But there seems to be also an incoherent (γn) J/ψ component

The bulk has low $p_T \sim 90$ MeV, and is consistent with coherent prod.

J/ψ cross section vs theoretical calculations I

- J/ψ cross section
 - $d\sigma / dy |_{v=0} = 76 \pm 31 \text{ (stat)} \pm 15 \text{ (syst)} \mu b$
- $\frac{d\sigma_{J/\psi+Xn}}{dy}\bigg|_{|y|<0.35} = \frac{1}{BR} \cdot \frac{N_{J/\psi}}{Acc \cdot \varepsilon \cdot \varepsilon_{trigg} \cdot \mathcal{L}_{int}} \cdot \frac{1}{\Delta y}$ = 15 (syst) μ b
- Model predictions drawn
 - Starlight: coherent only, parameterization of HERA data
 - Strikman et al: coherent & incoherent color-dipole + $\sigma_{J/\psi N}$ = 3mb
 - Gonçalves-Machado: coherent only color-dipole + Glauber-Gribov shad.
 - Kopeliovich et al: coherent & incoherent color-dipole + gluon saturation
- Looks compatible with coherent predictions, but... measured p_t spectra suggests both coherent (γA) and incoherent (γN) J/ψ production

J/ψ cross section vs theoretical calculations II

- Cross-section is consistent with different model predictions
- > ... though current precision precludes yet any detailed conclusion on the basic ingredients: shadowing and nuclear absorption

Provide Rough comparison with HERA e-p data, $\sigma_{\gamma p} = A^{\alpha} \sigma_{\gamma A}$ If coh. incoh. ratio is 50% - 50%

$$\phi$$
 $\alpha_{incoh} = 0.92 \pm 0.08$

- ⇒ α ~ 1, good agreement with HERA data hard probes scaling!
- Similar comparison with STAR ρ measurement gives
 α_{coh} = 0.75 ± 0.02,
 closer to A^{2/3} soft scaling

[ZEUS, Eur.Phys.J. C24 (2002) 345] [H1, Eur.Phys.J. C46 (2006) 585] [STAR, Phys.Rev.C77 (2008) 034910]

Summary

- First measurement of $J/\psi \rightarrow e^+e^-$ photo-production and of two-photon production of high-mass e^+e^- in nucleus-nucleus interactions!
- Efficient forward neutron tagging trigger,
- Clean sample of 28 e⁺e⁻ pairs and no like-sign pairs for m_{ee} ≥ 2.0 GeV/c², from which ~ 10 are from J/ψ.
- Their p_T spectrum is peaked at low $p_T \sim 90 MeV$ as expected for coherent photo-production.
- $\gamma \gamma \rightarrow e^+e^-$ cross-section at mid-rapidity is 86±23(stat)±16(syst) μb/(GeV/c²) for m_{ee} \in [2.0,2.8] GeV/c²,
- ...and it is in good agreement with QED theoretical calculations.
- \rightarrow J/ ψ photo-production cross-section at mid-rapidity is 76±33(stat)±11(syst) μ b
- Their measured p_T distribution suggests both coherent (γA) and incoherent (γ n) J/ψ photo-production in accordance with predictions,
- The J/ ψ cross-section is consistent with different model predictions (pQCD) and with HERA data but precludes yet any detailed conclusion on the gluon-shadowing and J/ ψ nuclear absorption.

What is next? Looking forward...

- Collected data on 2007 ~ 3 x statistics on 2004
 - Increased statistics:
 - Improve the statistical uncertainties
 - May allow to separate coherent & incoherent J/ψ components
 - May allow to separate come.

 Forward rapidity measurements become possible.

 Models predict distinct rapidity dependences depending on the puclear shadowing scheme
- Further future plans may include the eRHIC program?
- The LHC, new insights
 - Unexplored kinematic regime
 - ◊ J/ψ at x~5·10⁻⁴ at y~0
 - ⋄ Y UPC studies will be possible

Backup slides

Comparison with HERA data

Rough comparison with HERA e-p data, if coherent incoherent ratio is 50% - 50%

$$\sigma(\gamma\,A o J/\psi\,A) = rac{d\sigma(A\,A o J/\psi\,A\,A)}{dy}\cdotrac{1}{2\omegarac{dN_{\gamma}}{d\omega}}$$

$$2N_{\gamma}=6.7\,(10.5)$$
 for coherent (incoherent) at $\langle W_{\gamma p}\rangle=24\,\mathrm{GeV}$
 $\sigma(\gamma\,Au\to J/\psi\,Au)=5.7\pm2.3\pm1.2\,\mu b$ for coherent $\sigma(\gamma\,Au\to J/\psi\,Au)=3.6\pm1.4\pm0.7\,\mu b$ for incoherent

HERA (H1 & ZEUS) input

$$\sigma(\gamma \, p \to J/\psi \, p) = 30.5 \pm 2.7 \, nb \text{ at } \langle W_{\gamma p} \rangle = 24 \, \text{GeV}$$

$$\frac{\sigma(\gamma \, Au \to J/\psi \, Au)}{\sigma(\gamma \, p \to J/\psi \, p)} = 186 \pm 88 \, (118 \pm 54) \text{ for coherent (incoherent)}$$

$$\sigma(\gamma \, Au \to J/\psi) = A^{\alpha} \, \sigma(\gamma \, p \to J/\psi)$$

Result:

$$\Delta_{coh} = 1.01 \pm 0.07$$

$$\Delta_{\text{incoh}} = 0.92 \pm 0.08$$

 \Rightarrow α ~ 1, good agreement with HERA data hard probes scaling

J/ψ prediction vs shadowing model

Filho, Gonçalves, Griep; Phys.Rev.D78:044904 (2008); arXiv:0808.0366 (2008);

The PHENIX Central Arm

J/ψ photo-production at CDF

[CDF, arXiv: 0902.1271, 7 Feb 2009]

